The obstacle problem for non-coercive equations with lower order term and $L^{1}$-data
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولNew family of Two-Parameters Iterative Methods for Non-Linear Equations with Fourth-Order Convergence
متن کامل
The obstacle problem for a class of hypoelliptic ultraparabolic equations
We prove that the obstacle problem for a non-uniformly parabolic operator of Kolmogorov type, with Cauchy (or Cauchy-Dirichlet) boundary conditions, has a unique strong solution u. We also show that u is a solution in the viscosity sense.
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملSome Homogenization Results for Non-Coercive Hamilton-Jacobi Equations
Recently, C. Imbert & R. Monneau study the homogenization of coercive HamiltonJacobi Equations with a u/ε-dependence : this unusual dependence leads to a non-standard cell problem and, in order to solve it, they introduce new ideas to obtain the estimates on the oscillations of the solutions. In this article, we use their ideas to provide new homogenization results for “standard” Hamilton-Jacob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2019
ISSN: 1029-242X
DOI: 10.1186/s13660-019-2157-9